Construct and validate pred_meta_t objects, which are used to store predictor
metadata.
Usage
as_pred_meta_t(x)
create_pred_meta_t(pred_spec)
# S3 method for class 'pred_meta_t'
print(x, ...)Arguments
- x
An object that is accepted by
data.table::setDT()- pred_spec
A list of predictor specifications, schema: see examples
- ...
passed to
data.table::print.data.table()
Value
A data.table of class "pred_meta_t" with columns:
id_pred: Unique ID for each predictorname: Name for use in code and queriespretty_name: Name for plots/outputdescription: Long description / operationalisationorig_format: Original format descriptionsources: Sources, a data.frame with colsurlandmd5sumunit: SI-compatible unit (nullable for categorical)factor_levels: Map of factor levels (nullable)
Methods (by generic)
print(pred_meta_t): Print anpred_meta_tobject, passing params to data.table print
Examples
create_pred_meta_t(list(
noise = list(
unit = "dBa",
pretty_name = "Maximum noise exposure",
orig_format = "10m*10m raster",
description = "daytime & nighttime road & rail noise exposure",
sources = list(
list(
url = "https://data.geo.admin.ch/ch.bafu.laerm-strassenlaerm_tag/laerm-strassenlaerm_tag/laerm-strassenlaerm_tag_2056.tif",
md5sum = "a4b9f1c04ee63824f18852bfd1eecbdd"
),
list(
url = "https://data.geo.admin.ch/ch.bafu.laerm-bahnlaerm_nacht/laerm-bahnlaerm_nacht/laerm-bahnlaerm_nacht_2056.tif",
md5sum = "4b782128495b5af8467e2259bd57def2"
)
)
),
distance_to_lake = list(
unit = "m",
pretty_name = "Distance to closest lake",
orig_format = "vector",
description = "Derived from swissTLM3D",
sources = list(list(
url = "https://data.geo.admin.ch/ch.swisstopo.swisstlm3d/swisstlm3d_2025-03/swisstlm3d_2025-03_2056_5728.gpkg.zip",
md5sum = "ecb3bcfbf6316c6e7542e20de24f61b7"
))
)
))
#> Predictor Metadata Table
#> Number of predictors: 2
#> name pretty_name
#> <char> <char>
#> 1: noise Maximum noise exposure
#> 2: distance_to_lake Distance to closest lake
#> 5 variables not shown: [description <char>, orig_format <char>, sources <list>, unit <char>, factor_levels <list>]